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Resonant splitting of a vector soliton in a periodically inhomogeneous birefringent optical fiber
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We analyze the dynamics of a two-component (vector) soliton in a model of a birefringent nonlinear
optical fiber with a periodic spatial modulation of the birefringence parameter (group velocity
difference). Evolution equations for the parameters of the vector soliton are derived by means of a varia-
tional technique. Numerical simulations of these equations demonstrate that the critical modulation am-
plitude necessary for splitting, regarded as a function of the soliton’s energy, has a deep minimum very
close to the point at which direct resonance takes place between the periodic modulation and an internal
eigenmode of the vector soliton in the form of small relative oscillations of the centers of the two com-
ponents. A shallower minimum, which can be related to another internal eigenmode of the vector soli-
ton, is also found. We further briefly consider the internal vibrations of the vector soliton driven by a
constant force, which corresponds to the birefringence growing linearly with propagation distance. The
effect predicted has practical relevance to ultrashort (femtosecond) optical solitons, and it can be em-

ployed in the design of fiber-optical logic elements.

PACS number(s): 42.81.Dp, 42.81.Gs, 42.81.Qb, 03.40.Kf

I. INTRODUCTION

The dynamics of two-component solitons in
birefringent nonlinear optical fibers has attracted a great
deal of attention for several reasons. The birefringence
can affect the propagation of solitons in long-distance
soliton-based optical communication lines [1]; it may find
a potential use in all-optical logic elements (e.g., direc-
tional couplers [2,3]); and lastly, it gives rise to a number
of challenging problems both for experimental studies [4]
and for theoretical analysis (see, e.g., Refs. [5-11]). One
of the central problems considered in these studies is the
possibility of the splitting of an initial two-component
soliton into single-component ones [3,10].

In the present work, we shall analyze the dynamics of a
vector (two-component) soliton in an inhomogeneous
fiber. Thus far, the effects of a randomly varying
birefringence have been analyzed in models of inhomo-
geneous fibers [1,8]. We shall consider a model of a fiber
with a regular periodic inhomogeneity, aiming to find an
effective resonant mechanism for the splitting of the vec-
tor soliton into its constituent components. It should be
possible to create an artificial regularly modulated
birefringence, fabricating a fiber either with a periodically
modulated elliptical cross section or with a periodically
modulated twist. From the technological point of view, it
could be a problem to fabricate a very long fiber, keeping
in it the strictly periodic modulation of the birefringence.
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However, in what follows it will be demonstrated that the
effect considered may be of practical importance only for
ultrashort solitons, so that the fiber does not need to be
extremely long. Another important result obtained below
is that the resonance may have a conspicuous finite
width, so that moderate random changes in the modula-
tion should not be very critical for the implementation of
this effect.

It is known that a vector soliton admits internal oscil-
lations with certain eigenfrequencies. In Ref. [6], two
eigenfrequencies have been found for a “symmetric” vec-
tor soliton, i.e., one with equal components in both polar-
izations. One eigenmode corresponds to positional inter-
nal oscillations of the vector soliton, i.e., oscillations of
the centers of the two components relative to each other
(this eigenmode was also considered in Ref. [11]). The
other eigenmode corresponds to shape oscillations in
which the width and amplitude of the soliton oscillate
synchronously in both components. Actually, this sym-
metric mode of the shape oscillations is the same as that
found previously for a single-mode soliton [12]. Then, in
Ref. [9] it has been demonstrated that the vector soliton
has in addition a third eigenmode corresponding to an-
tisymmetric shape oscillations, in which the width-
amplitude oscillations of the two components (polariza-
tions) are 7 out of phase relative to each other. In Ref.
[9], it has also been demonstrated that there exists a con-
tinuous family of asymmetric stationary vector-soliton
states, i.e., those with unequal components in the two po-
larizations. In the general case, the asymmetric soliton
also has three eigenfrequencies of internal oscillations,
the corresponding eigenmodes mixing the positional and
shape oscillations.
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The existence of the eigenfrequencies suggests the pos-
sibility of resonant effects in a periodically inhomogene-
ous fiber when its periodicity is commensurate with one
of the soliton’s eigenfrequencies. Actually, all the eigen-
frequencies are functions of a single parameter, viz., the
energy of the soliton. Thus resonance can be expected at
a certain value of the energy. Recently, we considered a
similar problem for a single-mode model with a periodic
inhomogeneity of the dispersion coefficient [13] (models
equivalent to that used in Ref. [13] have been derived for
a fiber with a gradient-index structure [14] and for a fiber
with a periodically distributed gain compensating dissipa-
tive losses [15]). The dispersion coefficient was taken in
the form

D(z)=1+e€cos(kz) . (1)

where z is the propagation distance along the fiber and k
is the wave number of the periodic modulation. In this
case, resonance was possible with the shape oscillations of
the single-mode soliton. It has been demonstrated that,
in near-resonant cases, even a small inhomogeneity am-
plitude € (typically € ~0.05) rendered the shape oscilla-
tions seemingly chaotic, and there always existed a criti-
cal value €, at which the soliton was completely des-
troyed by the periodic inhomogeneity (i.e., the width of
the soliton was no longer oscillating, but permanently
growing instead). In all of the cases considered in Ref.
[13], €., was close to 1. Note that at these values of € the
total dispersion coefficient given by Eq. (1) remains every-
where positive, so that the destruction of the soliton had
to be associated just with dynamical resonances, not with
merely changing the sign of € from focusing into defocus-
ing. Lastly, it is relevant to mention that nonlinear opti-
cal fibers with a strongly inhomogeneous dispersion
coefficient have recently been fabricated [18], which lends
an additional physical relevance to the analysis given in
Ref. [13].

In the present work, we shall analyze the dynamics of a
vector soliton within the framework of the model based
on coupled nonlinear Schrodinger equations:

iu, +i8(z)u, +Ju, +(Jul*+ 4 v|>u =0, (2a)
iv, —i8(z)v, + v, +(|v]*+ 4 [u|*)v =0 . (2b)

Here u and v are the amplitudes of the two different po-
larizations, and the birefringence parameter & (which
measures the difference between the group velocities of
the two polarizations) is assumed to be a periodic func-
tion of the propagation distance,

8(z)=esin(kz) , (3)

cf. Eq. (1). In Eq. (3) we have dropped a possible con-
stant part of § because it can be eliminated by means of
an evident phase transformation. The birefringence im-
plies as well a phase velocity difference between the two
polarizations. However, the corresponding terms,
+&(z)u and —&(z)v, which should be added to Egs. (2a)
and (2b), respectively (§ is proportional to the phase ve-
locity difference), can also be eliminated. Nevertheless,
Eqgs. (2) and (3) represent but the simplest model of a

periodically inhomogeneous nonlinear fiber, since we
have neglected the periodic z dependence of the other
coefficients, as well as a possible linear coupling between
the polarizations which occurs in a model of a periodical-
ly twisted fiber [16]. In spite of this, analysis of this sim-
plest model is worthwhile, as our main goal is to predict a
new effect which is expected to be qualitatively similar in
more sophisticated models: resonant splitting of the vec-
tor soliton into two simple (polarized) solitons in the case
when the spatial frequency of the periodic inhomogeneity
is close to one of the internal eigenfrequencies of the vec-
tor soliton (and, first of all, when the resonant eigenfre-
quency is the one corresponding to the relative oscilla-
tions of the centers of the two components of the vector
soliton).

For comparison, we shall also briefly consider the case
in which the birefringence parameter & in Egs. (2) is a
linear function of z, §=e€z. In terms of the effective equa-
tions of motion for the essential parameters of the vector
soliton (see below), the linearly growing birefringence
gives rise to a constant driving force, while the periodi-
cally modulated birefringence induces a periodic force.
We shall show that the effect produced by the constant
force is quite trivial in comparison with the resonant
splitting.

It is necessary to emphasize that, in physical units, the
spatial periods of all the eigenmodes of small internal os-
cillations of the soliton are automatically of the same or-
der of magnitude as the soliton’s natural period [13]. In
the resonant case, when the period of modulation coin-
cides with that of the eigenmode, the fiber should be, at
least, several periods long, in order to make the resonant
effects visible. For the usual picosecond solitons, the nat-
ural period can be as large as several hundreds of kilome-
ters, so that it is not relevant to consider resonance for
solitons of this type. However, for ultrashort (fem-
tosecond) solitons, which are now intensively studied, this
period can be diminished to several dozens of meters, so
that the resonant effects can be produced in a periodically
inhomogeneous optical fiber of a reasonable length. Of
course, another difficulty is that, in the notation adopted
in Egs. (2) and (3), the effective birefringence coefficient
drops proportionally to the soliton’s mean period. The
natural birefringence of silica is known to be weak, so
that one may conclude that the birefringence will play no
role for ultrashort solitons. However, the artificial
birefringence, produced, e.g., by an elliptical cross section
of the fiber, can be rendered much stronger than the nat-
ural birefringence. Another important circumstance is
that, as will be shown below, the amplitude of the modu-
lation [the parameter € in Eq. (3)] necessary for splitting
is quite small near the resonance point, which may facili-
tate implementing the theoretical prediction in experi-
ments.

The resonant splitting seems a rather interesting effect
in itself; it may also find some practical applications.
Indeed, the splitting of a two-component soliton into un-
bound components could be used as an elementary opera-
tion in all-optical logic. In that case, it is just the period-
ic spatial modulation of the fiber which can be used to in-
duce this process. In what follows, it will be demonstrat-
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ed that resonant splitting is much easier to induce than
off-resonant splitting.

As for the coupling constant 4 in Egs. (2), it is known
that, generally speaking, one may get any value of 4 in
the interval 2 < 4 <2, depending on the value of the so-
called ellipticity angle [3]. However, of most practical in-
terest are the values corresponding to the edges of this in-
terval: A4 =2 (linear polarizations) and 4 =2 (circular
polarizations). In this work, we will primarily concen-
trate on these two special values of A.

Our analysis will be based on a variational approach
analogous to that developed for vector solitons in Ref.
[6]: assuming a given wave form for the soliton, we will
insert it into the full Lagrangian for Egs. (2) to derive a
system of ordinary differential equations (ODE’s) govern-
ing the evolution of the arbitrary parameters of the
chosen wave form. This is done below in Sec. II. In Sec.
II1, we consider the different resonances which can exist
in this system. Then, in Sec. IV we present the results of
direct numerical simulations of the ODE’s. We adopt the
following mode for the simulations: the spatial period of
the modulation is kept constant, while the parameter cor-
responding to the initial energy of the soliton is varied
(obviously, in an experiment it should be much easier to
change the soliton’s energy than the fiber’s modulation
period). The most important characteristic of the split-
ting is the critical (minimum) value €, of the modulation
amplitude € at which the splitting takes place. In Sec.
IV, we display the dependencies €, vs the soliton’s energy
for the two above-mentioned physically interesting values
of the coupling constant 4, 4=2 and 4 =2. The
dependencies clearly demonstrate deep minima at the
values of the energy at which the period of small internal
positional oscillations of the soliton is very close to the
fixed modulation period, which is a direct manifestation
of resonance. The accuracy with which the location of
the minima is predicted by the resonance condition
seems surprising, since the period of the internal position-
al oscillations was found for small oscillations, while
splitting is a strongly nonlinear effect, formally corre-
sponding to an infinitely large amplitude of the oscilla-
tions. It is noteworthy that, although the above-
mentioned resonant minima are indeed deep and sharp
enough, they nevertheless have a finite width (especially
in the case 4 =2%), which is probably a purely nonlinear
effect. The finite width of the minima implies that the
effect may be tolerant to moderate fluctuations of the
modulation period and amplitude, which, as was already
mentioned above, gives a much better chance to observe
it experimentally. Weaker additional minima are also
seen in the numerically found dependencies, which may
be identified with higher resonances.

When, at a fixed value of the soliton’s energy, the
modulation amplitude € increases from zero to the criti-
cal value, the simulations demonstrate that the regular
internal oscillations of the vector soliton, driven by the
periodic inhomogeneity, gradually become irregular
(seemingly chaotic), and at the value e=¢_, the vector
soliton splits after several oscillations. Not surprisingly,
at resonant values of the soliton’s energy the oscillations
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become chaotic at values of € much smaller than far from
resonance. Actually, at some off-resonant energies split-
ting has not been observed at all.

It is relevant to emphasize that, while the results to be
displayed below directly demonstrate that resonance ac-
counts for the modulation-induced splitting of a vector
soliton, the resonant character of the decay of the single-
mode soliton considered in the previous work [13] was
much less obvious, and in that case the resonance could
furnish only a qualitative, but not quantitative, explana-
tion of decay under the action of a periodic modulation.
Another noteworthy distinction from the previous work
is that, at a sufficiently large propagation distance, a
single-mode soliton in a periodically modulated fiber
must inevitably decay, if not through the resonant mech-
anism, then simply through the emission of radiation. In
contrast to this, the splitting of a vector soliton in a
periodically modulated birefringent fiber is not inevitable
at all, since, at a very large propagation distance, the vec-
tor soliton may slowly decay into radiation, keeping the
two components together. Thus the modulation-induced
splitting is a more nontrivial effect.

II. VARIATIONAL EVOLUTION EQUATIONS
FOR PARAMETERS OF THE VECTOR SOLITON

A variational approach to the analysis of the dynamics
of solitons in single-mode nonlinear fibers was developed
in Refs. [17] and [12], and it was then generalized to vec-
tor solitons in birefringent fibers in Refs. [6—8]. The ap-
proach is based on the Lagrangian for Egs. (2), which can
be averaged in the form L= f J_r:L dz, where the La-

grangian density is

L=Liluu*—uru+v,v*—vrv)
+id(zNuu*—ufu—vv*+ovrv)
=1, P+ o D)+ Lu [*+ o) + 4 ul?v]* . @)

The next step is to adopt a particular wave form (an-
satz) for the vector soliton. Following Ref. [6], we will
adopt the following ansatz, corresponding to symmetric
modes in the two polarizations:

(u,v)=mnsech exp |TiQ(tFy)

t+y
w

+12—I;V—(t+y)2+io,,2 , (5)
where the upper and lower signs and the subscripts 1 and
2 refer to u and v, respectively; 17°> and W are the peak
power and temporal width of the soliton (taken to be
equal for both components), b is the so-called chirp pa-
rameter (which is also assumed equal for # and v), 2y is
the separation between the centers of the two com-
ponents, and 2 is the frequency difference between
them. Then the ansatz (5) is inserted into the Lagrangian
(4). After integration and varying the resultant averaged
Lagrangian with respect to all the free parameters (which
are assumed to be arbitrary functions of z), we arrive at a
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system of dynamical equations which is a straightforward
generalization of that derived in Ref. [6]. It is convenient
to represent this system as two coupled second-order
equations for the variables y and W:

d2y j— —2r
ZZ———ZAKW F'(R)+e€k cos(kz) , (6a)
2
d W=—4—{W_3—KW"2
dz?> 7t
—3A4AKW 2[F(R)+RF'(N)]} , (6b)

where the particular form (3) for 8(z) has been inserted,
K is an integral of motion which takes an arbitrary posi-
tive value (K =7*W, i.e., K actually measures the energy
of the soliton pulse), R=2y /W, and

F(R)= R cosl.m:smhk . o

sinh”X

The other variables can be expressed in terms of y and W
as follows:

dy aw
o= =27
dz’ dz

The variables o, , drop out of the analysis as well, as they
did in Ref. [6]. In what follows, we will set k =1 in Egs.
(6), which can always be done by means of the obvious re-
scaling: z—kz, y—k 172 , W——»kl/2W, K —k _1/2K,
e—k 3%,

ITII. POSSIBLE RESONANCES
IN THE DRIVEN SYSTEM

The dynamical equations (6) with €e=0 have a fixed
point with the coordinates [6]

y=0, W=Wy=(1+4)"'K!, (8)

which corresponds to the exact vector-soliton solution of
the underlying equations (2). Equations (6) and (7) can be
expanded in a vicinity of the fixed point (8), to yield the
equations governing the corresponding small oscillations
of the variables y and w=(W — W)/ W:

2
—Zz}z’ = — 1 AKW y+ 8 AKW 3 yw + 12 AKW ;y?
+ecosx , (9a)
d*w 4 32 -
=——(1+ 4 K*‘w+ == 4KWi%2 .  (9b)
dz? ? 572 o
In Egs. (9) nonlinear terms of the lowest order have been
kept.

Neglecting the nonlinear corrections and setting € =0,
one obtains from Egs. (9) two (spatial) eigenfrequencies
for small oscillations [6]:

;=1 401+ APK*, (10a)

q,%,=iz(1+A>4K“, (10b)
T

the subscripts indicating that these eigenfrequencies are
related to small oscillations of the variables y and W, re-
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spectively.

When €70, one can expect a resonance between the
linearized y oscillations and the periodic drive [see Eq.
(6a)] when their periods, equal to (in the notation adopt-
ed) 2m/q, and 2, respectively, coincide, i.e., at

K74=lt4(1+4). (1n)

Taking into account the cubic term in Eq. (9a), one can
also expect a weaker resonance in the case in which
g, =7+ [see Eq. (10)]. A more important nonlinear reso-
nance is expected in the case in which gy, =2. Indeed, in
this case the variable y is driven at the frequency 1 ac-
cording to Eq. (9a), and the quadratic term in Eq. (9b) be-
comes, as can be seen, a resonant drive. According to
Eq. (10b), this resonance happens at

K“2=-1-(1+A)2. (12)
m

Another noteworthy case is that in which the double
eigenfrequency 2g, coincides with gy, so that the two de-
grees of freedom are in resonance with each other, al-
though, generally speaking, they do not resonate with the
external drive. It follows from Egs. (10) that this happens
at a rather small value of A4,

:_—1§__
16m2—15

with K arbitrary.

Lastly, one can expect a special situation (double reso-
nance) in the case in which the condition (12) holds and
simultaneously qy2= 1. Obviously, this happens at the
value of the coupling constant A4 given by Eq. (13), with
K given by Eq. (12):

K 2=0.389 . (14)

~0.11, (13)

It was stated above that physical values of 4 occur in the
interval 2 < 4 <2, so that the value (13) is not physically
relevant. However, in the numerical simulations present-
ed in the next section we will consider this case too, as it
seems to be of a certain methodological interest.

IV. NUMERICAL SIMULATIONS

To analyze different resonant cases in detail, we solved
numerically the full system of ODE’s (6) with the func-
tion F(R) defined by Eq. (7). For initial values y (0) and
W (0), we always took those corresponding to the point
(8), and we always took zero initial values for dy /dx and
dW /dx. The objective of the simulations was, first of all,
to monitor how the driven oscillations of the separation y
change with increase of the drive’s amplitude € at a fixed
value of the soliton’s energy K, and, what is most impor-
tant, to find a critical value € at which the symmetric
vector soliton (4) splits into simple solitons. Evidently, in
terms of our approach, the splitting will manifest itself as
a switch from oscillations of y to its permanent growth.
Accurate detection of €, required a long computation
time, as, at € slightly larger than €, the separation of the
two components of the vector soliton commenced after a
large number of oscillations with a slowly increasing am-
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plitude, and, strictly speaking, the duration of this tran-
sient period diverges when € is exactly equal to its critical
value. Note that a similar criterion was used in Ref. [13]
to identify the decay of the soliton into radiation in the
single-mode system with a periodically modulated disper-
sion coefficient (in Ref. [13], the oscillations of the
soliton’s width were monitored).

Then, varying the value of K, we aimed to plot a
dependence €.(K). This was done for the two aforemen-
tioned special values of the coupling parameter A that
are of basic physical interest: 4 =2 and 4 =2. The nu-
merically found dependencies €., vs K are depicted in Fig.
1. For both physical values 4 =% and 4 =2, one can
clearly see the resonant character of the dependencies.
First, we shall discuss in detail the results for 4 =2, as
this case seems simpler. For this case, Eq. (11) predicts
the simplest linear resonance at K =0.363. As is seen
from Fig. 1(a), a minimum value of €, for 4 =2 is at-
tained at a value of K which is slightly larger. This
minimum critical value is

€(2)=0.093 , (15)

where the superscript 1 indicates the simplest (first) reso-
nance and the argument 2 of € pertains to the value of
A.
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FIG. 1. The critical modulation amplitude, at which the vec-
tor soliton splits into components vs the soliton’s energy K: (a)
A4 =2; (b) 4=2, A being the coupling constant in Egs. (2).
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The second resonance is predicted by Eq. (12) at
K =0.591. In the plot displayed in Fig. 1(a), we clearly
see another minimum which is fairly close to this value.
The value of €., found at this point is

€2(2)=0.20 (16)

[cf. Eq. (15)], the superscript 2 indicating that this is the
critical value at the point of the second resonance. In
further simulations, higher resonances were not seen.

The accuracy with which the locations of the two mini-
ma are predicted by Egs. (11) and (12) for 4 =2 is re-
markable, as these expressions have been obtained from
the linearized equations for small oscillations, while the
splitting of the vector soliton is, patently, a strongly non-
linear effect (the amplitude of the oscillations diverges at
the splitting point).

For A=4%, Eq. (11) predicts the simplest resonance at
K =0.742. As is seen from Fig. 1(b) [note that the verti-
cal scale in Fig. 1(b) is different from that in Fig. 1(a)], in
this case we actually get a rather wide minimum in the
dependence €.(K), which begins practically exactly at
the value predicted, and extends, approximately, up to
K =0.95. The corresponding minimum value of €, is [cf.
Eq. (15)]

€(2)~0.058 . 17

Then we get another minimum at K close to 1.2, with
the value [cf. Eq. (16)]

€2(2)=~0.11 . (18)

Note that, in the present case, Eq. (12) predicts a second
resonance at K =~1.063. It seems plausible that, being de-
formed by nonlinear effects, it corresponds to the
minimum given by Eq. (18). In Fig. 1(b), one can also see
an additional minimum at K close to 1.4. The origin of
this minimum is not clear; it may be a purely nonlinear
effect.

It may also be of interest to trace the evolution of the
form of the driven oscillations with the increase of the
amplitude € from zero to the value €, at fixed values of 4
and K. We shall display here characteristic results for
the resonant values of K predicted by Eq. (11). For very
small values of €, e.g., for e=0.001 (Fig. 2), we observe
linear driven oscillations. A solution of Egs. (6) satisfying
the particular initial conditions formulated above should
take the form of a superposition of the driven and free os-
cillations. Due to a very weak nonlinearity (it is weak be-
cause of the smallness of the amplitude of the oscilla-
tions), the frequency of the free oscillations is slightly
shifted from the value given by Eq. (10a). This produces
a small frequency splitting between the driven and free
components of the full law of motion, which gives rise to
the long-period beatings clearly seen in Fig. 2. The re-
sults presented in Fig. 2 pertain to 4 =%; for 4 =2 the
results are very similar.

With increase of €, the oscillations become irregular
(chaotic). As is illustrated by Fig. 3(a), they already seem
quite irregular at €=0.05 (for 4 =2%). For 4 =2, the os-
cillations are also chaotic at €=0.05 [Fig. 3(b)], although
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FIG. 2. Small-amplitude resonant driven oscillations of the
separation y between the two components of the vector soliton
in the case 4 =1%, €=0.001.

they seem somewhat different from those shown in Fig.
3(a). As another example, in Fig. 4 we show chaotic os-
cillations, obtained for 4 =2 and the value of K given by
Eq. (12) (i.e., at the point of the second resonance), at
€=0.15. According to Eq. (16), this value is close to the
corresponding splitting point.
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FIG. 3. Irregular resonant driven oscillations at €=0.05 for
A=2 (a)and for 4 =2 (b).
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FIG. 4. Irregular driven oscillations in the case of resonance
at the double frequency near the splitting point (A4 =2,
€=0.15).

In Fig. 5 we show a typical example of the splitting of
the vector soliton when the modulation amplitude €
slightly exceeds the critical value. We took the values
A=2, K=0.8, and €=0.13, i.e., a point lying just above
the resonant minimum of Fig. 1(b). As is seen in this
figure, the vector soliton splits after performing several
internal oscillations (cf. typical plots in Ref. [13]).

Lastly, as a final illustration of the importance of the
resonant character of the birefringence modulation for
the splitting of the vector soliton, in Fig. 6 we display the
oscillations of the separation y between the centers of its
two components produced by a constant force in Eq. (6a).
To obtain Fig. 6, we solved Eqgs. (6) with the term € cosz
replaced by a constant €. Obviously, from the viewpoint
of the underlying partial differential equations (PDE’s)
(2), the constant force corresponds to the birefringence
term 8(z)=e€z growing linearly with z. In this run, we
started from the same initial point as in the case of the
modulated birefringence. We again took the values of the
parameters close to those at which the plot in Fig. 1(b)
has a minimum, ie, 4=2%, K=0.8, and for the
coefficient € we took the value 0.058, which is close to the

2t / \\ /
T / |
AV

FIG. 5. Splitting of the vector soliton at 4 = %, K=0.8, and
€=0.13.
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FIG. 6. Internal oscillations of the vector soliton produced
by the linearly growing birefringence, corresponding to a con-
stant force in Eq. (6a).

minimum amplitude (17) of the modulation which gives
rise to splitting. As can be seen from Fig. 6, the constant
force produces rather trivial internal vibrations of the
vector soliton around a new equilibrium position shifted
from the point y =0.

In addition to the physical values of the coupling con-
stant 4 considered above, we have also done simulations
for the value of 4 given by Eq. (13), when the two spatial
eigenfrequencies (10) coincide with each other, but not
with the driving frequency. For low values of K, off-
resonance splitting is sometimes possible, but the corre-
sponding critical values of € are large. For instance, in
the typical nonresonant case K =1K ., where K is the
resonant value given by Eq. (14), the splitting was detect-
ed at €,~0.40. Then, for K between 0.6K_., and
0.75K ., the value of €. rapidly decreases. For instance,
€,~0.41 at K =0.6K . and €,,~0.23 at K =0.7K ;. At
the point K =K [recall that, at the value of 4 given by
Eq. (13) which we are considering now, this is the point
of double resonance, in which the driving frequency coin-
cides with the eigenfrequency (10a), and, simultaneously,
twice the driving frequency coincides with the eigenfre-
quency (10b)], we have found €,~0.09, cf. Egs. (15) and
(17). However, at K > K the critical value of € does not
grow, as it did at the physical values 4 =2 and 4 =2
(see Fig. 1), but remains very small. This anomalous
behavior is due to the small value of 4 (13) that we are
dealing with now. From Ref. [6], at small A the value of
the velocity needed for escape to occur is also small (see
also Ref. [21]). Hence when A4 is small and X is large, the
oscillations become large enough so that escape is possi-
ble. Let us emphasize once again that this anomalous
behavior does not occur at the physical values of 4, %,
and 2, which prove to be sufficiently large to prevent es-
cape in this trivial way.

V. CONCLUDING REMARKS

In this work, we have demonstrated, by means of an
approximation based upon a variational technique, that a
vector soliton in a birefringent nonlinear optical fiber
with periodically modulated parameters is apt to split

into a pair of simple solitons. It has been shown that this
effect has a well-pronounced resonant character: the crit-
ical value of the modulation amplitude, at which the
splitting sets in, has a deep minimum at the value of the
soliton’s energy, which gives rise to resonance between
internal vibrations of the vector soliton and the periodic
modulation. The location of the minimum of the critical
modulation amplitude is fairly well predicted by the reso-
nance condition, despite the fact that the eigenfrequency
of the internal vibrations was obtained in the linear ap-
proximation for small oscillations, while splitting is a
strongly nonlinear effect corresponding to very large os-
cillations. The analysis presented in this work was based
upon the simplest model described by Egs. (2). As was
mentioned above, a more realistic model of a periodically
modulated birefringent fiber may include more terms.
However, we expect that the induced resonant splitting of
the vector soliton in more sophisticated models will be
similar to what has been obtained in the present model.

We have also briefly considered the case of constant
driving force in Egs. (6), which corresponds to the
birefringence coefficient growing linearly with propaga-
tion distance. This situation may be novel from the phys-
ical viewpoint; however, simulations of Egs. (6) have
shown that the linearly growing birefringence is much
less effective as a splitter of the vector soliton than the
resonant periodic modulation.

It is noteworthy that a pair of nonlinear Schrodinger
equations with the nonlinear coupling is an adequate
model not only of a birefringent fiber, but also of the
copropagation of two waves with different carrier wave-
lengths in a single-mode fiber [19]. In this case, the cou-
pling constant in Egs. (2) is 4 =2 (see also Ref [20]). It is
well known that the copropagating waves may form two-
component solitons, so that the results obtained in the
present work may also be interpreted as the splitting of a
two-wave soliton induced by the periodic modulation of
the fiber.

Finally, it is relevant to mention that constant (unmo-
dulated) birefringence can also split a vector soliton, but
in this case the problem should be formulated in another
way. Indeed, in our Eq. (6a) the effective driving force is
proportional to the z derivative of the birefringence pa-
rameter 6(z) in Egs. (2), i.e., it is equal to zero in the ab-
sence of modulation. On the other hand, constant
birefringence, as was mentioned in Sec. I, may be
transformed into an initial “relative velocity” of the two
components of the vector soliton, which, of course, can
split the soliton. Roughly speaking, this happens, provid-
ed that an effective “kinetic energy” generated by the ini-
tial relative velocity is larger than the “binding energy”
of the vector soliton. This effect was investigated both
numerically within the framework of the full equations
(2) [3,10], and analytically by means of perturbation
theory for two weakly coupled equations [21].
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